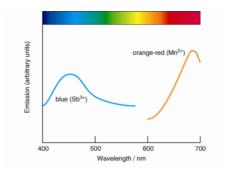
Luminescência

Propriedades Ópticas de Materiais Prof. Humberto (Material adaptado de M. Fox – Cap.5 e R. Tilley – Cap.9) Introdução / Motivação

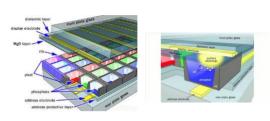
Quais as diferenças e semelhanças entre pirilampos e vagalumes?



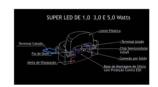
ZnS

Figure 9.1 (a) A pule yellow phosphor based on size sulfide (ZAS) in normal daylight, (b) The same material translated with altrasisel light with a wavelength range of 330–300 nm, showing a bright yellow-green fluorescence

Lâmpadas fluorescentes : Elétrons colidem com átomos de mercúrio (Hg), os quais emitem luz ultra-violeta, que é convertida em luz visível por um recobrimento fosforescente dentro do tubo de vidro.

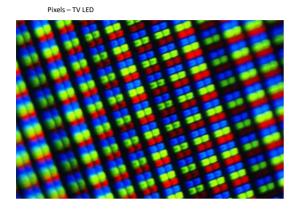

Colour and the Optical Properties of Materials Richard J. D. Tilley

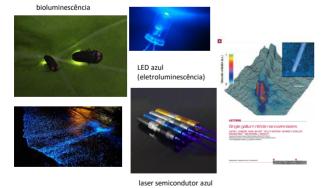
Espectro de emissão do Sb $^{3+}$ (emissão azul) e Mn^{2+} (emissão no laranja e vermelho) em um tubo de lâmpada fosforescente.

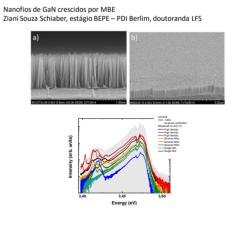

Colour and the Optical Properties of Materials Richard J. D. Tilley © 2011 John Wiley & Sons, Ltd

TV a plasma

TV a plasma: processo parecido com o de uma lâmpada fluorescente. Geração da luz UV => produzida por uma descarga em gás (plasma). Materiais fosforescentes dos pixels: azul, verde e vermelho (dopagem com diferentes elementos)


William				
T	Fluorescent		Incandescen	
LED				
1 Watt	=	3.Watt	=	15 Watt
3 Watt	=	7 Watt	=	35 Watt
5 Watt	=	11 Watt	=	50 Watt
7 Watt	=	15 Watt	=	70 Watt
9 Watt	=	19 Watt	=	90 Watt
12 Watt	=	25 Watt	=	120 Watt
15 Watt	=	31 Watt	=	150 Watt
18 Watt	=	36 Watt	=	180 Watt





(emissão estimulada)

1. Emissão de luz em sólidos

Vimos: Absorção de luz (cap.3), Modificação da absorção por éxcitons (cap.4)

Agora: Emissão de luz (Cap 5). Elétrons em um estado excitado decaem, emitindo fótons

⇒ equivalente à emissão espontânea em átomos.

O que é Luminescência ?

Em sólidos os processos de emissão radiativa são chamados de **Luminescência**

Vamos estudar aqui os **princípios gerais**, que nos permitem entender a **emissão interbandas em semicondutores**, e darão as bases para entendermos casos mais complexos.

Fotoluminescência

Eletroluminescência

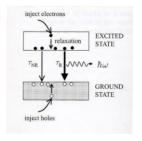
• Fóton • Elétron

=> excitação => injeção

=> fóton => fóton

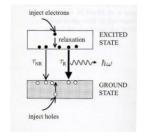

A geração de luz por Luminescência envolve:

*transições / emissão de fóton


*mecanismos de relaxação de energia em sólidos

=> (umpouco) + complicada que absorção

Taxa de emissão espontânea para transições radiativas entre dois níveis



 $A \propto B$ Emissão \longrightarrow Absorção

NR – não radiativa R - radiativa $I(hv) = |M|^2 g(hv) \times fator de ocupação$

$$\left(\frac{dN}{dt}\right)_{total} = -\frac{N}{\tau_R} - \frac{N}{\tau_{NR}} = -N\left(\frac{1}{\tau_R} + \frac{1}{\tau_{NR}}\right)$$

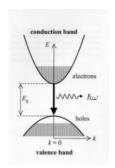
NR – não radiativa R - radiativa

Eficiência de Luminescência

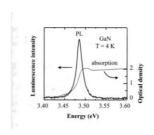
$$\eta_R = \frac{AN}{N\left(\frac{1}{\tau_R} + \frac{1}{\tau_{NR}}\right)} = \frac{1}{1 + \tau_R/\tau_{NR}}$$

Se
$$\tau_R \ll \tau_{NR} \Rightarrow \eta_R \rightarrow 1$$
 $\tau_R \gg \tau_{NR} \Rightarrow \eta_R \rightarrow 0$

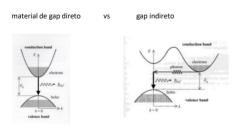
2. Luminescência Interbandas


Luminescência Interbandas

Elétrons excitados na BC voltam para a BV

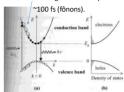

Aniquilação de par elétron-buraco um elétron a menos na BC um buraco a menos na BV - <u>simultâneo</u>

recombinação elétron-buraco


Absorção => <u>criação</u> de par e - h

Comparação dos espectros de emissão e absorção

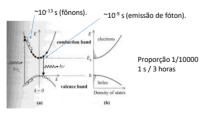
Emissão:



A probabilidade de emissão no material de gap direto >> gap indireto

3. Fotoluminescência

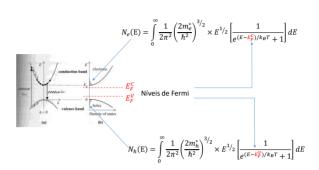
Fótons são absorvidos de uma fonte de excitação tal como um laser ou uma lâmpada, e isso injeta elétrons na banda de condução e buracos na banda de valência.


Os elétrons podem emitir suas energias iniciais rapidamente emitindo fônons.

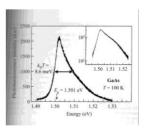
Como é a ocupação dos estados da BC por elétrons e da BV por buracos ?

Quanto maior o número de elétrons livres na BC e buracos livres na BV maior a probabilidade de recombinação

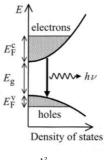
=> a intensidade da luminescência depende da ocupação



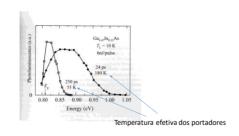
Após termalizarem os elétrons e buracos terão que esperar até que possam emitir um fóton ou recombinarem de maneira não radiativa.


Os elétrons e buracos têm tempo para formar distribuições térmicas no fundo das bandas como as mostradas na figura

$$\begin{split} g_c(\mathbf{E}) &= \frac{1}{2\pi^2} \bigg(\frac{2m_e^*}{\hbar^2} \bigg)^{3/2} \times \left(E - E_g \right)^{1/2} \\ f_e(\mathbf{E}) &= \frac{1}{e^{(E - E_F^e)/k_BT} + 1} \end{split}$$


3.1 Baixa densidade de portadores

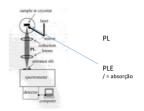
$$I(h\nu) = \left(h\nu - E_g\right)^{1/2} \times e^{\left(h\nu - E_g/k_BT\right)}$$


3.2 Degeneração (altíssima densidade de portadores)

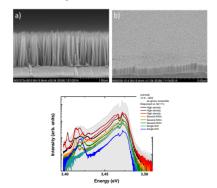
Semicondutor degenerado
⇒ nível de Fermi entra nas bandas

$$E_F^{c,v} = \frac{\hbar^2}{2m_{e,h}^*} \big(3\pi^2 N_{e,h}\big)^{3/2}$$

Fotoluminescência resolvida no tempo


Orientação da polarização da emissão

⇒ Em algumas situações especiais a emissão de PL pode ter polarização circular bem definida


Isso ocorre quando as transições envolvem mudanças no momento angular dos elétrons via interações spin-órbita bem definidas, os fótons emitidos podem ter polarização circular, cujo sentido depende da mudança de momento angular dos elétrons.

(Não vamos fazer em detalhe, não cai na prova)

3.3 Espectroscopia de Fotoluminescência

Nanofios de GaN crescidos por MBE Ziani Souza Schiaber, estágio BEPE – PDI Berlim, doutoranda LFS

4. Eletroluminescência

O que é eletroluminescência ?

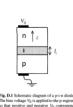
Processos **eletroluminescentes** são aqueles em que a luminescência é gerada por uma corrente elétrica injetada no dispositivo

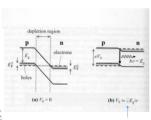
Injeção de elétrons ⇒Emissão de luz

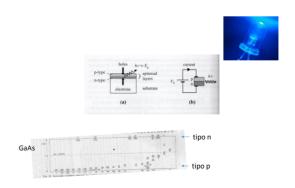
LEDs / lasers semicondutores

Junções de semicondutores

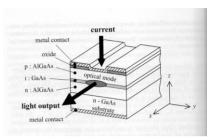
dopado tipo p - intrínseco – dopado tipo n





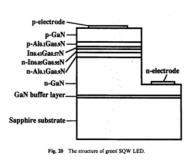

Fig. D.1 Schematic diagram of a p-i-n diode The bias voltage V₀ is applied to the p-region so that positive and negative V₀ correspont to forward and reverse bias respectively. The dimensions are not drawn to scale. The iregion is typically only a few microns thick.

Quando polariza em reversa os elétrons e buracos são afastados (usada nos fotodetectores)

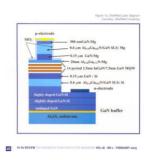


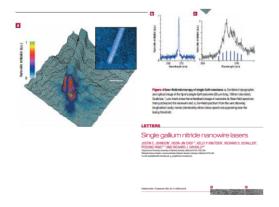
Quando polariza em direta os elétrons e

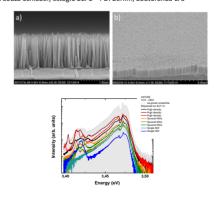



GaAs 1 mA 293 K $E_{\rm g} = 1.42 \ {\rm eV}$ 1.2 1.4 1.6 1.8 Energy (eV)

Laser semicondutor (cavidade horizontal)







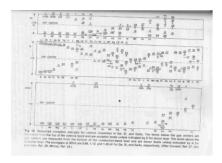
Lasers de GaN – Cavidade Vertical – alta integração

Nanofios de GaN crescidos por MBE Ziani Souza Schiaber, estágio BEPE – PDI Berlim, doutoranda LFS

5. Luminescência: Pontos principais

- Luminescência ⇔ emissão espontânea em sólidos
- Taxa de emissão ∝ elem. de matriz x densidade de estados x ocupação dos níveis
- Alto coeficiente de absorção => decaimento rápido, emissão forte
- Luminescência interbanda ≡ recombinação elétronburaco
- Luminescência interbanda independe da energia de excitação
- Portadores excitados decaem rapidamente para o fundo das handas
- Após termalizarem os portadores se distribuem no fundo das bandas de acordo com a distribuição de Fermi-Dirac.

5. Pontos principais


- Gap direto => decaimento rápido ~ 1 ns (eficiente), gap indireto => decaimento lento (luminescência pobre ou inexist).
- LEDs (Diodos Emissores de Luz) geralmente feitos de semicondutores de gap direto.
- LEDs diodos p-n ou p-i-n, que emitem quando polarizados em direta: polo (+) > lado p, polo (-) > lado n.

Próximos Temas

- Cap. 7 Elétrons Livres e Metais
- Cap.10 Vibrações da Rede e Fônons
- Avaliação 3 19/07.
- Cap.6 Confinamento Quântico

Exercícios

• Trabalhe em duplas nos exercícios 5.1 a 5.5 (para entregar)

