Lista de Exercícios – Luminescência¹

- (5.1) Explique por que é difícil fazer um dispositivo emissor de luz a partir de um semicondutor de gap indireto.
- (5.2) Quando um semicondutor de gap direto é excitado por absorção de fótons maiores que o band gap, observa-se geralmente que o espectro de luminescência é independente da frequência de excitação. Explique esse fenômeno.
- (5.4) O tempo radiativo τ_R de uma transição laser em safira dopada com titânio é 3.9 μ s. O tempo de vida τ medido para o estado excitado resulta em 3.1 μ s quando o experimento é realizado a 300 K e 2.2 μ s quando medido a 350 K. Explique por que $\tau \neq \tau_R$, e sugira um motivo para que pelo qual τ decresce com o aumento da temperatura. Calcule as eficiências radiativas em cada temperatura.
- (5.5) Verifica-se que um semicondutor cristalino emite eficientemente em 540 nm quando excitado com a linha de 488 nm de um laser de argônio. Use os dados da tabela fornecida no final nesta lista para "adivinhar" qual é o cristal.
- (5.6) Um feixe de laser contínuo incide em um material cujo coeficiente de absorção é α na frequência ν .
 - (a) Mostre que os pares elétron-buraco são gerados a uma razão igual a $I\alpha/h\nu$ por unidade de volume, por unidade de tempo, onde I é a intensidade da radiação no material.
 - (b) Considerando o balanço entre geração de portadores e recombinação no estado estacionário, mostre que a densidade de portadores N dentro do volume iluminado é igual a $I\alpha\tau/h\nu$, onde τ é o tempo de recombinação dos elétrons e buracos.
 - (c) Calcule N quando um laser de potência 1 mW é focalizado em um ponto circular de raio 50 μ m em uma amostra, com tempo de vida do estado excitado de 1 ns, recoberta com camada anti-reflexiva. Considere o coeficiente de absorção como $2x10^6$ m $^{-1}$.
- (5.8) Explique por que a probabilidade de emissão para uma transição interbanda é proporcional ao produto dos fatores de ocupação para elétrons (f_e) e buracos (f_h) . No limite clássico, onde se aplica a estatística de Boltzmann, mostre que o produto f_e f_h é proporcional a $\frac{1}{\rho} (hv E_g)/k_B T$
- (5.9) No limite clássico, mostre que o número de elétrons na banda de condução de um semicondutor é dado por:

$$N_e(E) = \frac{e^{E_F^C/k_BT}}{2\pi^2} \left(\frac{2m_e^*k_BT}{\hbar^2}\right)^{3/2} \int_0^\infty x^{1/2} e^{-x} dx$$

Dado que $\int_0^\infty x^{1/2}e^{-x}\,dx=\sqrt{\pi}/2$, avalie E_F^C a 300 K para GaAs $(m_e^*=0.067m_o)$ quando $(a)~N_e=1\times 10^{20}~m^{-3}$ e (b) $N_e=1\times 10^{24}~m^{-3}$. Discuta se as aproximações usadas para derivar essa equação é justificada nos dois casos.

¹ Traduzido e adaptado de M. Fox, para a disciplina Propriedades Ópticas de Materiais, da Unesp/Bauru, pelo Prof. José Humberto. Depto de Física.

(5.10) Mostre que em T=0 K as integrais de Fermi

$$N_e(E) = \int_0^\infty \frac{1}{2\pi^2} \left(\frac{2m_e^*}{\hbar^2}\right)^{3/2} \times E^{1/2} \left[\frac{1}{e^{(E - E_F^C)/k_B T} + 1}\right] dE \qquad (Eq. 5.9)$$

$$N_h(E) = \int_0^\infty \frac{1}{2\pi^2} \left(\frac{2m_h^*}{\hbar^2}\right)^{3/2} \times E^{1/2} \left[\frac{1}{e^{(E-E_F^V)/k_BT} + 1}\right] dE \qquad (Eq. 5.10)$$

simplificam para:

$$N_{e,h}(E) = \int_{0}^{E_F^c} \frac{1}{2\pi^2} \left(\frac{2m_{e,h}^*}{\hbar^2}\right)^{3/2} \times E^{1/2} dE$$

Avalie a integral para derivar a Eq.5.13:

$$E_F^{C,V} = \frac{\hbar^2}{2m_{e,h}^*} (3\pi^2 N_{e,h})^{2/3}$$

(5.11) Um laser excita um semicondutor, que tem $m_e^*=0.1m_o$ e $m_h^*=0.5m_o$. Calcule as energias de Fermi de elétrons e buracos, para densidade de portadores de (a) $N_e=1\times 10^{21}~m^{-3}$, e (b) $N_e=1\times 10^{24}~m^{-3}$, assumindo que as distribuições são degeneradas. Escreva a condição de temperatura para que as condições de degenerescência se apliquem a cada caso e comente as respostas que você obteve.

Tabela D.3. Dados de estrutura e band gap para alguns semicondutores comuns. Eg é o band gap a 300 K, e o índice i/d indica se o gap é indireto ou direto. O bandgap negativo do HgTe indica que ele é um semimetal (o topo da banda de valência é mais alto que o fundo da banda de condução).

Compound	Crystal structure	$E_{\rm g}~({\rm eV})$	Type
SiC	6H polytype	2.9	i i
AIN	wurtzite	6.2	d
AIP	zinc blende	2.41	i
AlAs	zinc blende	2.15	1
AlSb	zinc blende	1.62	16.1
GaN	wurtzite	3.44	d
GaP	zinc blende	2.27	1
InN	wurtzite	0.7	d
ZnO	wurtzite	3.4	d
ZnS	wurtzite or zinc blende	3.8 or 3.7	d
ZnSe	wurtzite or zinc blende	2.8 or 2.7	d
ZnTe	zinc blende	2.3	d
CdS	wurtzite or zinc blende	2.5	d
CdSe	wurtzite or zinc blende	1.8	d
CdTe	zinc blende	1.5	d
HgTe	zinc blende	-0.14	semimeta
CuCl	zinc blende	3.17	d
Cu ₂ 0	cuprite	2.2	d