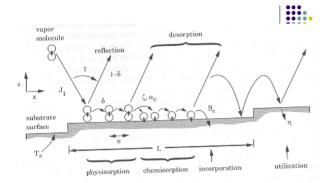

Na aula anterior (5.1)

Por que os filmes finos apresentam diferentes morfologias?

=> Vamos estudar os principais mecanismos envolvidos no crescimento

R: Por que há diferentes mecanismos envolvidos no crescimento

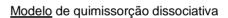

Formação de Filmes aderência estrutura tensões / rupturas rugosidade / morfologia

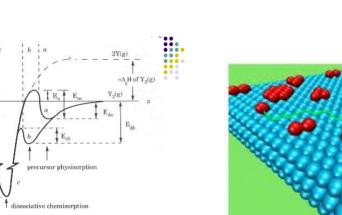
Etapas da deposição de filmes: o. geração 1. Adsorção 2. Difusão na superfície 3. Incorporação 4. Nucleação 5. Estruturação e morfologia 6. Difusão de Fase Sólida entre o filme e o substrato

Aula passada (Aula 5.1): 0. <u>geração</u> 1. Adsorção 2. Difusão na superfície 3. Incorporação 4. Nucleação 5. Estruturação e morfologia 6. Difusão de Fase Sólida entre o filme e o substrato

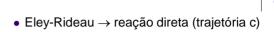
1. adsorção

 átomos e moléculas chegam na superfície e interagem parte <u>adsorve</u> na superfície

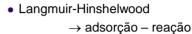



Coeficientes do Crescimento

- $\boldsymbol{\delta}$ -probabilidade de armadilhamento
- $1-\dot{\delta}$ probabilidade de reflexão
- α_c coeficiente de condensação (quimisorção)
- ζ probabilidade de reação de quimissorção S_c coeficiente de aderência ("sticking coeficient")
- η coeficiente de utilização


Adsorção (fisisorção) ↔ Ligação (quimisorção)

+400 E_p, KJ/mol

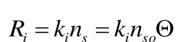


Van der Waals
 (interação tipo dipolar – fraca ~ 0.1 eV/molec)

Χ

 Reação covalente (troca de elétrons – forte > 1 eV/molec)

(trajetórias a ou b – depois c)

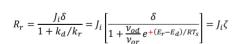


$$\tau = \tau_o e^{\left(\frac{E_{lig}}{k_B T}\right)}$$

Tempo de permanência de uma molécula na superfície

$$\tau_o \cong 10^{-13} s$$

	to	1,00E-13	e(Eb/kBT)	t(s)=
Eb(va	Eb(vanWaals)=		54,59815	5,46E-12
Eb(I	Eb(ligquims)=		2,35E+17	2,35E+04
	kBT(eV)=		0,025 (Tambiente = 300 K)	

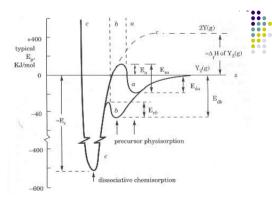

R_i - taxa de reação da *i-ésima* espécie com a superfície (reações/cm².s)

$$k_i = v_{oi}e^{-E_i/RT}$$

constante de reação

 $n_s = n$ úmero de sítios ocupados / cm² $n_{so} = n$ úmero de sítios na sup erfície / cm² $\Theta = t$ axa de ocupação

R_r Taxa de reação com a superfície

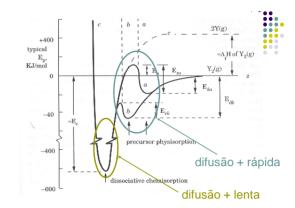

 J_i = fluxo incidente

 δ = fração adsorvida

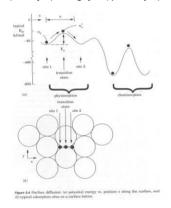
k_d = taxa de dessorção

k_r = taxa de reação

ς = probabilidade de reação de quimisorção



Adsorção (fisisorção) ↔ Ligação (quimisorção)


2. difusão

 átomos ou moléculas se movimentam pela superfície <u>difundem</u> alguma distância, antes de serem incorporados pelo filme.

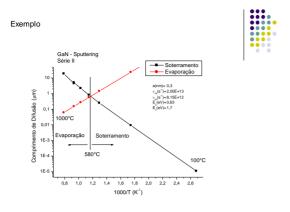
Adsorção (fisisorção) ↔ Ligação (quimisorção)

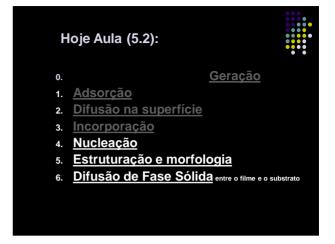
comprimento de difusão na superfície (cm)

$$\Lambda = a \sqrt{\frac{\upsilon_{os} n_o}{J_r}} \cdot e^{-E_s/2RT}$$

regime de soterramento (burial)

comprimento de difusão na superfície (cm)


$$\Lambda = a \sqrt{\frac{v_{os}}{v_{oc}}} \cdot e^{(E_c - E_s)/2RT}$$


regime de desorção (evaporação)

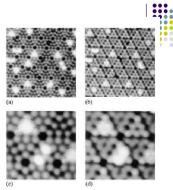
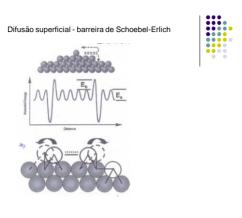
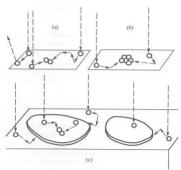
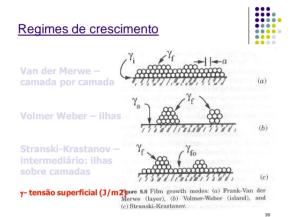
Mostrar simulação do programa do Douglas, para os regimes burial e evaporação

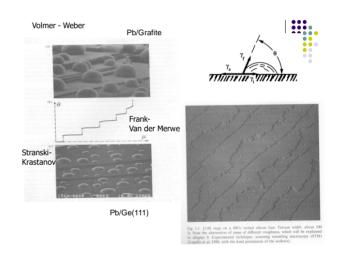
30

O que acontece quando os átomos ou moléculas da fase vapor encontram uma superfície ?

 Agregação inicial na superfície do substrato

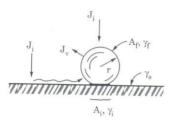
Mobilidade atômica - nucleação


FIG. 1. Filled and empty state STM images of 0.01 ML Pb on Si(III)- (7×7) measured at room temperature. The scanning areas are 16.25×16.25 nm² [(a) and (b)] and 6.0×60 nm² [(c) and (d)]. Sample voltages are $+2 \times [(a)$ and (c) and $-2 \times [(b)$ and (d)]. Tunnel current is 0.2 nA for all images.

Esquema:
adsorção – difusão nucleação – incorporação – formação de platôs

Crescimento de gotas em superfícies – raio crítico


• Importância da tensão superficial

 $\gamma_s \leftrightarrow \gamma_i + \gamma_f \cos(\theta)$

7

$$\mu_{\rm v} - \mu_{\rm c} = RT \ln \frac{p}{p_{\rm v}} = RT \ln \frac{J_{\rm c}}{J_{\rm v}}$$

$$\Delta G = -(\mu_v - \mu_c) V_{V_{mc}} + \gamma_f A_f$$

$$\Delta G = -RT \ln(p/p_v) \left(\frac{(4/3)\pi r^3}{V_{mc}} \right) + \gamma_f 4\pi r^2$$

Modelo capilar - Raio crítico

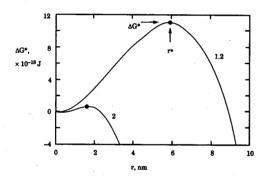
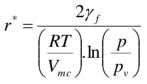



Figure 5.10 Classical nucleation behavior of water for two values of the supersaturation ratio (* denotes critical-cluster condition).

Raio crítico

Energia de Gibbs do Núcleo Crítico

Sítios especiais

 $\Delta G^* = \frac{(16/3)\pi \gamma_f^3}{\left(\frac{RT}{V_{mc}}\right) \cdot \ln\left(\frac{p}{p_v}\right)}$

 Possível: existência de sítios especiais mais ativos para adsorção – crescimento preferencial Exemplo: Diamante sobre Si.

Rugosidade da superfície => papel importante na nucleação em torno de <u>sítios especiais</u> favoráveis

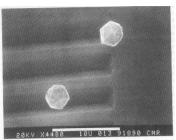
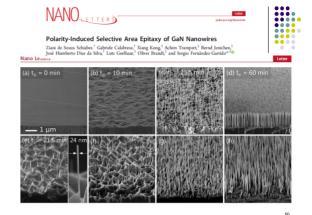
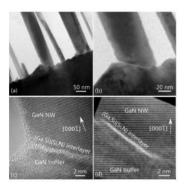
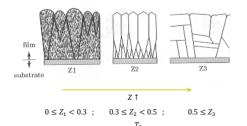




Figure 5.3 SEM photograph of two diamond nuclei growing on a patternea single-crystal Si substrate. The CVD of diamond from 1'S CH₁ in H₂ at 4000 P as was activated by a =2000° C Ta filament positioned 8 mm above the 900–1000° C substrate. (Previously unpublished photo courtesy of Paul A. Dennie from the laboratory of David A. Stevenson, Stanford University.)

Etapas da deposição de filmes:

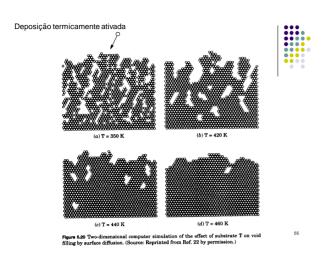

5. estruturação

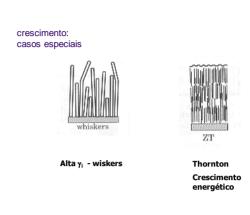
=> Com a união de vários núcleos formase o filme e a estrutura atômica é definida.

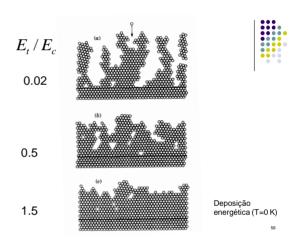
crescimento:

Modelo de Movchan – Demichishin

T_{substrato} / T_{fusão}




Importante:


A estrutura dos filmes formados muda fortemente com a quantidade de energia térmica disponível para os precursores

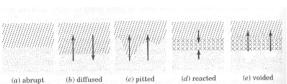
54

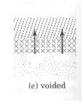
Deposições com acréscimo energético:

A estrutura depende da distribuição de energias* das partículas energéticas que chegam ao filme em crescimento

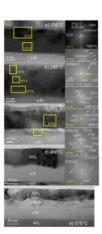
* muito acima da energias térmicas

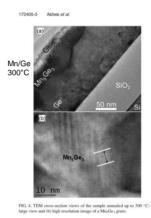
=> em geral de natureza elétrica
exemplo típico: sputtering

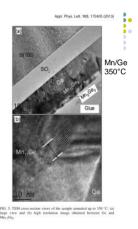



difusão (de fase sólida) posterior / entre o filme e o substrato

difusão (de fase sólida) posterior / entre o filme e o substrato

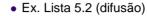



Filme Ni / filme a-Si


- Difusão sólida, diferentes temperaturas

- P. T. Tremblay et al. J. Vac. Sci. Technol. B 31(5), 051213-1, 2013.

Etapas da deposição de filmes:


- 1. Adsorção
- 2. Difusão na superfície
- 3. Incorporação
- 4. Nucleação
- 5. Estruturação e morfologia
- 6. Difusão de Fase Sólida entre o filme e o substrato

Exercícios - Cap. 5

Problema - 5.1 Smith

 Uma molécula tem coeficiente de condensação α_c = 0.2 para deposição de um filme em sua própria fase sólida. Para esta molécula quais são os valores máximo e mínimo dos coeficientes de crescimento?
 (δ, S_c, η, γ)

Ex. Lista 5.14 (dedução da Eq. R_r e ζ)

• Ex. Lista 5.2 (difusão)

• Ex. Lista 5.14 (dedução da Eq. R_r e ζ)

Algumas animações sobre crescimento

ALD

https://www.youtube.com/watch?v=HUsOMnV65jk

